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Abstract

Changeuxet al. recently suggested that the SARS-CoV-2 spike pratey interact with nicotinic
acetylcholine receptors (nAChRs), and that suckraations may be involved in pathology and
infectivity. This hypothesis is based on the fdwattthe SARS-CoV-2 spike protein contains a
sequence motif similar to known nAChR antagonidexe, we use molecular simulations of validated
atomically detailed structures of NAChRs, and @f $pike, to investigate the possible binding of the
Y674-R685 region of the spike to nAChRs. We exantireebinding of the Y674-R685 loop to three
NAChRs, namely the humarfi2 anda7 subtypes and the muscle-likgyd receptor froniretronarce
californica. Our results predict that Y674-R685 has affinily hAChRs. The region of the spike

responsible for binding contains a PRRA motif, arfeesidue insertion not found in other SARS-like



coronaviruses. The conformational behaviour of iband Y674-R685 is highly dependent on the
receptor subtype: it adopts extended conformationthe 042 and a7 complexes, but is more

compact when bound to the muscle-like receptothéudf2 andafpyd complexes, the interaction of

Y674-R685 with the receptors forces the loop Cardio adopt an open conformation, similar to
other known nAChR antagonists. In contrast, indfiecomplex, Y674-R685 penetrates deeply into
the binding pocket where it forms interactions witie residues lining the aromatic box, namely with
TrpB, TyrC1l and TyrC2. Estimates of binding energiyggest that Y674-R685 forms stable
complexes with all three NAChR subtypes. Analysesimulations of the glycosylated spike show
that the Y674-R685 region is accessible for bindig suggest a potential binding orientation of the

spike protein with nAChRs, in which they are inamparallel arrangement to one another.

Statement of significance

It was recently suggested that the SARS-CoV-2 spiketein may interact with nicotinic
acetylcholine receptors, and that such interactioag be involved in pathology and infectivity. We
investigate this hypothesis by molecular dynamigsiations. Our results predict that a viral spike-
protein peptide (adjacent to the furin cleavage)ixhibits favourable binding affinity to nicotmi
acetylcholine receptors and suggest subtype-spedyinamics for the peptide. We show that this
peptide is accessible in the fully glycosylateckepWe model how the spike may interact with these

receptors, and find that interaction is possiblénhe two proteins in a non-parallel arrangement.

I ntroduction

The severe acute respiratory syndrome coronavi®RS-CoV-2) is a novel strain of coronavirus
that first appeared in China in late 2019 and caitise potentially fatal disease COVID-19. This siru
initially infects respiratory epithelial cells byroling to the angiotensin-converting 2 enzyme (ALE2
receptor (1). Although predominantly recognizedaasspiratory disease (2, 3), SARS-CoV-2 also
causes severe inflammation and damage in othen®sr@a7). Under certain conditions (and as with
other coronaviruses (8)), SARS-CoV-2 may enter ¢bmtral nervous system (CNS) through the
bloodstream by disrupting the blood-brain barrieinfecting the peripheral nerves (e.g. (7, 9-12)).

Since it emerged as a human pathogen, SARS-Co\ézdzsed more than 80.8 million confirmed
cases of COVID-19 and more than 1.7 million deatiosldwide, as of 28 December, 2020 (13).

Several major risk factors for the development @\MID-19 have been identified, including age,



heart disease, diabetes and hypertension (14)n@eecapparently low prevalence of smokers among
hospitalised COVID-19 patients (15-17), it was megd that nicotine may offer some protective
value to mitigate COVID-19 (the ‘protection’ hypesis)(15). It has been suggested that medicinal
nicotine (either in patches, gum, or electronicivéel systems) should be investigated as a
therapeutic option for this disease (e.g. (15, .18))nical trials for nicotine are underway (e.g.

https://clinicaltrials.gov/ct2/show/NCT04429815). ltéknative explanations to the protection

hypothesis have been proposed (19): the firsteglad the failure in correctly identifying smokers
upon hospital admission (19), and the second it libapitalised COVID-19 patients may be less

likely to smoke as their comorbidities motivaterthe quit (‘'smoking cessation’ hypothesis)(19).

Based on the early observations of the lower thgme&ed smoking prevalence in hospitalised
COVID-19 patients, Changeux and colleagues suggest®le for nicotinic acetylcholine receptors
(nAChRS) in the pathophysiology of COVID-19 via iaedt interaction between these receptors and
the viral spike glycoprotein (20). This suggestizas based in the fact that the spike protein cosita
a sequence motif similar to known nAChR antagor{&i (Figure S1), such asi-bungarotoxin from
Bungarus multicinctus and glycoprotein fronRRabies lyssavirus (formerly Rabies virus). Changeuwset

al. and others also proposed that COVID-19 mightdrgrolled or mitigated by the use of nicotine, if
the latter can compete with the virus for bindiagtese receptors (e.g. (9, 18, 20-24)). If intéoas
with nAChRs are important, they may be relevant ome of the systemic effects observed in
COVID-19.

NAChRs are cation channels that belong to the pearia ligand-gated ion channel family (25). They
are present in both the peripheral (at the skeletalromuscular junction and in the autonomic
nervous system) and CNS (26). The neuronal recetave emerged as important targets for the
treatment of Alzheimer’s disease, schizophreni@ pad nicotine addiction (26, 27). Mutations of
muscle nAChR can cause congenital myasthenia gavjs A large repertoire of nAChR subtypes
differ in the homo- or heteromeric assembly of fikenomers arranged around a central channel axis
(28-30). Each nAChR subtype shows different seligtfor agonists and antagonists (28-30). All
NAChRs share the same basic architectbigu¢e 1B), formed of a large N-terminal extracellular
domain (ECD), where the agonist binding site isated; a transmembrane domain (TMD)
surrounding the ion channel; an intracellular dom@CD); and a short extracellular C-terminal
domain (CTD) (28-30) The ligand-binding pocket iscdted at the interface between two
neighbouring subunitd={gure 1B) and is formed by loops A, B and C from the pnatisubunit and

D, E and F from the complementary subufitgire S2). The a4p2 nAChR is the most prevalent
heteromeric subtype in the brain: it is implicataddiverse processes such as cognition, mood and
reward, and is necessary for nicotine addiction32B The homomeria7 nAChR is also abundant
and widely expressed in the CNS, where it contebud cognition, sensory processing and attention

(32). Thea7 subtype is also expressed on a variety of nonemali cells, such as immune cells,
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astrocytes, microglia, endothelial cells, whereantributes to anti-inflammatory pathways (33-35).
Due to its role in the downregulation of the prdilut of pro-inflammatory cytokines (33-35), it has
been suggested that thé NnAChR may be involved in the hyper-inflammati@sponse that can be
caused by SARS-CoV-2 (9, 18, 24, 36). The musgbe-tyeceptor derived from the electric organ of
Tetronarce californica (formerly Torpedo californica) is one the most extensively studied nAChRs,
and has provided significant structural insighoitttis receptor family. It is formed by twoand one
each off, 8 andy subunits, and has high sequence similarity (55%-8@entity) with its human
counterpart (37). For this reason, and becaustristure is available (38), we used it in this kvas

a proxy for the human muscle-type nAChRs. Muscteydi@, myalgia and arthralgia are common
symptoms in COVID-19 patients (e.g. (39-41)). Hoesenwt is still unclear if these symptoms result

from direct muscle damage from viral infection rh the body’s inflammatory response (7, 39).

According to Changeurt al.’s ‘nicotinic hypothesis’, direct interaction beten SARS-CoV-2 and
NAChRs occurs via a small region in the viral sgiketein (20) Figures S3 and $4). The spike is a
fusion protein (42, 43) found on the surface of ¢ireon that mediates entry into host cells. lais
extensively glycosylated homotrimer, with each nmaeo formed by three domaingigure 1A):
head, stalk and cytoplasmic tail (CT) (42). Thecheamprises two subunits: S1, which binds the
ACE2 receptor on host cells (42), and S2, whiclilifates membrane fusion (42). The spike contains
two proteolytic cleavage sites (42): one (‘furireabage’ site) at the S1/S2 boundary thought to
activate the protein (44) and a second in the Zirgtithat releases the fusion peptide (45). The
region suggested by Changeetxal. to be directly involved in the interaction witih@hRs spans
from Y674 to R685 and is located in the head regibthe protein, at the interface between the S1
and S2 domains, immediately preceding the S1/S&vatge point (42)Rigures 1A, S3 and $4).
Furin cleaves the peptide bond after R685, thuars#ipg it from its neighbour S686 (e.g. beforalir
exit from the host cell) (44). Cleavage activatwrwviral glycoproteins is known to be important for

infectivity and virulence (42, 44).

The Y674-R685 region contains a 4-residue, polyb®RRA insertion not present in other SARS-
CoV-related coronaviruses (46) that is homologauseveral neurotoxins known to target nAChRs
(20). In SARS-CoV-2, abrogation of the PRRA motibderately affects virus entry into cells (42,
44). This motif has recently been shown experinnta interact with neuropilin-1 receptors (47), T
cell receptors (48), and host cell glycans, suchhegarin sulfate (49, 50). The high sequence
similarities between the Y674-R685 region and sEv&nown nAChR antagonistsigure S1)
suggests that this region of the SARS-CoV-2 spikégin may bind to nAChRs, potentially acting as
an antagonist (20). Hence, it has been postul&i@dnicotine may have an effect in COVID-19 by
competing and interfering with this binding. Nokat an alternative region (G381 to K386 in the S1
subunit) in the spike protein has been hypothesiaadteract with nAChRs (51), but glycosylation

makes this unlikely.



Figurel

Here, we use molecular simulations to examine tieotinic hypothesis’ proposed by Changeatix
al. (20), in particular to test whether the SARS-Co¢gke protein can bind stably to nAChRs via
the Y674-R685 region and identify interactions thady be involved in the stabilisation of the
complexesTo test this, we have built structural models fog tomplexes formed by the 12-residue
region from the spike (S-peptide) and the ECDshode different nAChRs, namely the humsifi2,
humana7 and muscle-likefyo receptor fromretronarce californica (hereafter namedfys). These
simulations build on our successful previous extensimulations of nAChRs, which have e.g.
identified a general mechanism for signal propagait this receptor family (52-54), and simulations
of the spike (55-58) and its interactions (47, 59).

Results and discussion

I nteractions between the SARS-CoV-2 S-peptide and nAChRs

Structural models of the three SARS-CoV-2 S-peptideChR complexes were built based on the
cryoEM structure of thexpyd receptor fromTetronarce californica with bungarotoxin (38)a-
bungarotoxin is a neurotoxin that acts as a nAChagonist, directly competing with acetylcholine
(60), and has high sequence similarity with the 4&685 region of the spike protein of SARS-CoV-
2 (Figure S1). Twenty models were generated for each compled, the one with the lowest
Modeller objective function (61)F{gures 2 and S7) was used as the starting point for MD
simulations (see the Supporting Information for endetails). Three replicate simulations, each 300
ns long, were performed for each complex to ingasé the peptide-receptor conformational

behaviour and possible induced-fit effects.

Figure?2

At the beginning of the simulations, the S-peptwigs located in the binding pocket, bound by
interactions with both the principal and compleragpisubunitsKigures 2 and S7). A closeup view

of the peptide-receptor interface reveals extensor@acts igures 2B and S7B), mainly with the
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principal subunit. In all three complexes, the siiain of R682 of the S-peptide binds as the
recognised positively charged group, a strictlyssswed pharmacophore of all NAChR ligands (62,
63). As can be seen iRigure 2B, the guanidinium group of R682 is well-positioniedide the
aromatic box, forming several catianinteractions with TyrC1lodY223, a7Y210,aY214 in the
humano4f2, humana7 and muscle-likexpyd receptor fromTetronarce californica, respectively),
TyrC2 (@4Y230, a7Y217,0Y222) and TyrA ¢4Y126, a7Y115,0Y117). Note that these cation-
interactions do not entirely mimic the binding otatine, as no interactions with TrpB are present
(64). R682 is part of the four-residue PRRA ingertnot found in other SARS-like coronaviruses
(46), and it forms part of the furin cleavage $iteated the boundary between the S1 and S2 subunits
(42). Additional binding interactions with the piglet are also observed with different residues
depending on the receptor subtype: inddp2 nAChR, hydrogen bonds involving the side-chaihs o
adY223,04E224,325192,2D195 in the receptor and Q675, N679 and the miad@Acnitrogen of
A684 of the S-peptide are observed; in #1enAChR, two hydrogen bonds betweerD186 and
a7Y210 in the receptor and S-peptide Q675 and Q&7 Been; in thefyd receptor fronTetronarce
californica, hydrogen bonds involvingY214 andéD186 from the receptor and Q675, N679, R682
and R683 of the peptide are observed.

The simulations show distinct patterns of dynamigahaviour for the S-peptide in the different
receptor subtypes. In the4B2 and o7 complexes, the peptide showed high positional and
conformational variability, while in theyo complex, it generally remained in the same pose
throughout the simulatiori-{gures S8 andS10). Similar behaviour is observed for the peptidethe

two binding pockets in each complex. When bounthéx4f32 anda7 nAChR, the peptide adopted
many different binding modes inside the pocketgnag from highly compact to fully extended
conformations Eigure S10). In contrast, in thepyd receptor, the peptide was more comp&agyre
S10). The range of the radius of gyration values F&r $-peptide in all three complexes is similar to
that observed in the simulations of the full-lengtycosylated SARS-CoV-2 spike protein embedded
in a viral membrane (55Figure S6). Principal component analysis (PCA) of the peptitynamics
revealed different conformational behaviour of pleptide in the three complexes. When bound to the
muscle-like receptor, the peptide shows limited adgital freedom: it explores a restricted

conformational space spanned by the first two padcomponentsHigure S11).

The number of hydrogen bonds between the peptidetla® receptors over the simulations was
determinedKigure S12). Two more H-bonds are observed in éifigo complex than in the4p2 and
a7 receptors Rigure S12). These additional interactions with the completagn subunit Figure
S12) probably contribute to the increased stability this complex and the more compact

conformation of the peptide in tlyd receptor.



Analysis of the distribution of the distance betwabe R682 of the peptide and the conserved
aromatic residues forming the aromatic box shoves distinctive behaviour of the peptide when
bound to different receptorg-igure S13). Interactions with R682, TyrCl and TyrC2 are quit
frequent in all three complexes, being present nioaa 60% of the time. To examine how deeply
into the binding pocket the peptide inserts, we itooed the interactions of R682 with TrpB, a
residue lining the back wall of the nAChR aromdiax. TrpB @4W182,a7W171 andaW173) is
highly conserved across the nAChR family, and ikesacationk and H-bond interactions with the
positively charged group on the ligands (62, 63theadf2 andafyd complexes, the S-peptide does
not extend far into the pocket and interactionsveen R682 and TrpB are mostly absdfiggre
S13). In contrast, in ther7 complex, the peptide binds more deeply into theérdphobic cavity,
adopting conformations that allow not only for #eect contact between R682 and TrgBgures
S14-S15) but also achieve optimal core-binding interaddi@figure 3). In such configurations, other
interactions are present in addition to those WithB, namely catione interactions with TyrC1 and
TyrC2 (Figure S15). Although no direct contact between R682 and TiwAbserved, both residues
are connected through a H-bond network mediateQ@%5 from the S-peptidé-i(gure S16). This is
significant because interactions with TyrA, TrpByr€C1 and TyrC2 are known to be critical for

ligand binding and to modulate gating in thé subtype (65-67).
Figure3

The binding of a ligand or a peptide can be expktbeaffect the conformational dynamics of the
receptors (e.g. (52-54, 68-70)). To investigates,thhe Root Mean Square Fluctuation (RMSF)
profiles of the ¢ atoms were determined for all three receptorstirigis dynamic behaviours are
observed for the binding site regions in the dédfdrsubtypesHigures S17-S19). These differences
are mostly in loops C and F, two structural maiifgortant for binding and selectivity (66, 71, 72).
Loop F shows decreased flexibility in thdp2 complex, while loop C dynamics is more restridted

the muscle-likexpyd receptor, compared to the other two subtypes.

At the beginning of the simulations, in all thegdrcomplexes, loop C adopted an open conformation
due to the steric interference of the peptide. myithe simulations, thepyd and a4p2 receptors
mostly maintained this open conformation. In tffecomplex, as the peptide moved deeper into the
binding pocket, loop C rotated inwards, adoptirggmi-closed structure. Loop C capping is known to
be important for the anchoring of the ligands ie Binding pocket (66, 71) and has been suggested to
be indirectly involved in gating (53, 73). A relatiship between loop C position and ligand activatio
has also been proposed (72): agonists are progossthbilise more compact loop conformations
while antagonists disfavour loop closing. On thésib, our findings suggest that the S-peptide may
act as an antagonist in thyd and a4p2 receptors, thus inhibiting gating. However, i tv

subtype, it is unclear whether the peptide mayrbagonist or antagonist, and whether it can promote
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gating. How the S-peptide affects the different IMRS may be relevant to understanding COVID-19
pathophysiology (9, 18, 24, 36).

Table 1: MM-PBSA relative binding energy values for the $#de in the human4f2, humam7 and muscle-
like ayd nAChR fromTetronarce californica. Numbers in brackets represent the standard devsatNote that
the values reported in this table are averaged aNeeplicates (see Table S1 for th&,q for the individual

replicates) and do not contain the entropic coutiim to the binding energy.

Average AGy,inq for the complexes (kJ/mol)
adf?2 o/ apyd
First pocket —215.9 (80.4) —184.5 (24.3) —374.3 (98.5)
Second pocket —215.7 (65.7) —114.9 (46.6) —391.5 (75.8)

A molecular mechanics Poisson—-Boltzmann surfaca @vid-PBSA) approach (74, 75) was used to
calculate the free energy of binding of the S-pkptio the different receptor3gbles 1 and S1).
MM-PBSA calculations are an efficient and oftenfubmethod to estimate binding free energies (74,
75), and are widely used to study protein-ligartdrzctions in medicinal chemistry (76-78) including
in drug design for nAChRs (79, 80). The favourabsdculated binding energies suggest stable
complex formation between the S-peptide and abahmAChRs Tables 1 and S1), with different
binding affinities depending on the subtype.

Table 2: BUDE Alanine-scanning predicted averafjaGy,,q for the hot-spots (—3 kd/malresidue contribution
< 3 kJ/mol) in the first binding pocket of the retms. The average value was calculated over theethr
replicates. Numbers in brackets represent the atdrdkeviations (calculated over the 303 framescpetplex).
Note that theAAG,;g corresponds to the difference between mutant aitditype complexes, and as such

positive AAGy;gvalues mean that the mutation to alanine destakilize complex.

First binding pocket
a4p2 receptor o7 receptor Muscle-like ayd receptor
residue (?Slan]"(’)‘f) residue éﬁ%‘(’)‘f) residue (?(ﬁ/(r;r:g?)
B2D195 9.5 (3.6) a7Y210 7.6 (2.2) aY214 12.1 (2.6)
adY223 7.7 (2.0 a7W77 5.1 (2.0) 5D201 6.1 (1.9)
a4Y230 3.7(2.2) a7Y115 3.8 (2.9) SW197 4.6 (2.3)
B2wa32 3.3(1.7) 075188 3.7 (1.9) 51199 4.0 (0.8)




a7D186 3.1(2.1) 5D186 3.9 (1.7)

SE203 3.8 (2.0)
aT215 3.1 (1.5)

In silico alanine-scanning mutagenesis was performed tdifiemportant residues (referred to as
‘hot-spots’) in peptide—-receptor associatidrigres S20-S22). Hotspots are residues with high
energetic contributions to the thermodynamic sitgbdf a given complex (81). Alanine-scanning
provides a detailed energy map of a protein-bindmerface (81). Here, we used the fassilico
method, BudeAlaScan (81), in which every residoe pbth receptor and peptide, is mutated (singly,
in turn) to alanine. Hotspots are determined bydifference between the binding free energies ef th
alanine mutant and wild-type complex@sAGying) (81). Hotspots were identified at the interfade o
the receptor, some of them common to all threeypaist Figure S23 and Tables 2 and S2). In
particular, TyrC1 ¢4Y223,a7Y210,aY214) and the negatively charged residues in thpeupart of
loop F $2D195,07D186,3D201, 6E203) strongly stabilise the complex. In the hum@mAChHhR,
the substitution of several key agonist-bindingdess in the aromatic box (namely Tyr&7(y115),
TyrC1l (@7Y210), TrpB a7W171) and TrpD(7W77)) by alanine is also predicted to destabiiiee
interface between the peptide and the receptore€iues in the peptide, Y674, R682 and R685 are
the major contributors to stabilizing the interfg€égure S24). This analysis reinforces the critical
role of R682 in binding to NAChRs.

Accessibility of the SARS-CoV-2 S-peptide in MD simulations of the full-length glycosylated
spike

Since the beginning of the pandemic, the computatistructural biology/biomolecular simulation
community has investigated the SARS-CoV-2 spikaginoin different states and conditions, and the
complexes that it forms (e.g. (55-59, 82-86)). Satans have revealed the dynamics of the spike
and its glycan shield (55, 57-59, 82, 83, 85, 8&) the effects of the binding of small molecule§, (5
84). Here, to further explore the ‘nicotinic hypesis’, we show that the Y674-R685 region
(corresponding to the S-peptide) is accessibléifoding, using the available MD simulations of the
fully glycosylated full-length SARS-CoV-2 spike ppein in the open and closed states by Casaino
al. (55) We note that in these models, the Y674-R@8fion was modellede novo as it was entirely
(open spike) or partially (closed spike) missingthe initial cryoEM structures (42, 43) (for more
details see Supporting Information). In these satiohs, the Y674-R685 region adopts
conformations potentially compatible with bindirgtAChRs Figure 4A). Our analysis reveals that
the Y674-R685 loop is only weakly shielded by tiycans, and is predominantly solvent-exposed
(Figure 4 andFigure S5). Especially when the spike is in the closed stitgure 4B), the Y674-
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R685 loop appears highly accessible to a probe avithdius ranging from 1.4 A to 15 A. In contrast,
in the open spikeHjgure 4C), a larger variability of the accessible arealisayved, preventing an
unambiguous interpretation of the glycan shielé&fbn Y674-R685 for probes with a radius larger
than 7 A. The slightly different and less variaatzessibility of the Y674-R585 loop observed in the
closed spike when compared the open spike prateim agreement with the sharper distribution of
the radius of gyration calculated for this regiarthe closed spiké=(gure S6). This behaviour might
indicate different binding propensity of the S-pdetin the open and closed spike states. We
hypothesize that it might be linked to a differgraicking of the three spike monomers in the two
states. We note that the accessibility of thismegnakes it available to bind other receptors may

also bind the PRRA motif, such as neuropilin-1.

Figure4

Conclusions

In summary, the findings reported here supportipothesis that the SARS-CoV-2 spike protein can
interact with nAChRs. Our calculations indicatebf#ebinding of the spike protein to these receptors
through a region adjacent to the furin cleavage aitd corresponding to the Y674-R685 region.
These calculations also show apparent subtypefgpieteractions and dynamics for the Y674-R685
region. COVID-19 is known to cause a range of niegioal (87, 88), muscular (39), and respiratory
(89) symptoms and these predicted interactions beayelevant to understand the pathophysiology

associated with this disease.

Our results predict that the Y674-R685 region of #pike protein has affinity for nAChRs. The
region in the spike responsible for binding to nA&Shharbours the PRRA motif and shares high
sequence similarity with neurotoxins known to beQmR antagonists. The guanidinium group of
R682 is the key anchoring point to the binding mickvhere it forms several interactions with the
residues that form the aromatic box. Analysis af #dtructure and dynamics of the full-length
glycosylated spike shows that the Y674-R685 regimirudes outside the glycan shield, is solvent
accessibleigures 4 and S5) and is flexible Figure S6), showing that it is accessible to bind to
NAChRs (and to other receptors such as neuro@iny. Modelling the interaction between the full-
length spike and nAChRs indicates that associdtopossible with the proteins in a non-parallel
orientation to one anotheFigure $4). Cryoelectron microscopy and tomography experisyeand
coarse-grained simulations, show considerable bgrald tilting of the spike. A tilt angle up to 60°
relative to the normal axis of the membrane is ek (57, 58, 85, 90, 91). This flexibility of the
spike protein would facilitate binding to host nARh
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Evidence that the interaction between the Y674-R&fon of the spike and nAChRs is possible
comes from the recently characterized interactibthe spike protein with neuropilin-1 (47), which
was shown to occur via the same region as the mpogped here. Having explored various possible
orientations, we find that only approximately nargllel arrangements of the spike and receptor
allow for their interaction. This non-parallel indetion may not be immediately obvious, but it is
consistent with other observations and is poss$dslévo principal reasons: first, membrane curvatur
and deformation, and second, bending of the staélkh® spike. Experiments (e.g. cryoEM and
tomography) and coarse-grained simulations shovgrafisant degree of stalk bending is possible,
and that the spike can adopt a wide range of cordEbons with different degrees of bending (57, 85,
90, 91) given by the three flexible hinges in thike protein (85).

In the a4p2 andofyd complexes, the conformational dynamics of the lblo¥i674-R685 peptide are
compatible with the hypothesis of it acting as atagonist: it forces loop C to adopt an open
conformation and prevents the formation of impdrtamteractions within the binding pocket.
Intriguingly, in thea7 complexes, the peptide adopts binding modesathaw strong interactions
within the aromatic box, raising the question ofetiter it promotes gating in this subtype. This is
important because activation off nAChR triggers anti-inflammatory signalling menfsmns in
inflammatory cells, leading to a decrease in cytekproduction, which may have relevance in
understanding early COVID-19 pathology (9, 18, 28). If nicotine does indeed prove to have any
clinical value, it is likely that it would be due tnterfering with the association with NnAChRss#f,
nicotine analogues (e.g. smoking cessation agemth @s varenicline (92), cytisine (93) and
potentially cytisine variants (54)) could also fingeful application for COVID-19.

Given the promising results presented here, straictnutational and single-channel studies will be
of interest to test the importance of the intemadiof the SARS-CoV-2 spike with nAChRs, and the
potential relevance of these interactions to pathland infectivity in COVID-19. To assist with
further investigations, we make our simulationdiknd datasets available and openly accessible, in
accordance with the sharing principles agreed toobly community for simulations relevant to
COVID-19 (94).

Supporting citations
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Material.
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Figure 1. Overview of the three-dimensional structures of the SARS-CoV-2 spike protein and

the apyd NAChR from Tetronarce californica. (A) The model for the complete, fully glycosylated,
SARS-CoV-2 spike represents the closed state opthtein, after furin cleavage (55). The spike
protein is a homotrimer (42): each monomer is shawdifferent colours, namely green, cyan and
orange, with glycans depicted in pink. Each monoimmdbrmed by three domains: head, stalk and
cytoplasmic tail (CT) (42). The Y674-R685 regiorstsown in red.B) The cryoEM structure of the
muscle-type receptor frorfetronarce californica (PDB code: 6UWZ) (38). This receptor is a
heteropentamer formed of two(green), ond (blue), one’ (yellow), and one (orange) subunits.
Each monomer is formed by four domains (28-30)ramdllular (ECD), transmembrane (TMD),
intracellular (ICD) and C-terminal domain (CTD).dhgonist binding site is located in the ECDs at

the interface between two neighbouring subunits.

Figure 2. Predicted binding modes of the SARS-CoV-2 S-peptide to different nAChRs. (A)
Complexes formed by th®@-peptide and three different NAChRs, namely thedno4f2, humano7

and the muscle-likefyd receptor fromrletronarce californica. The S-peptide (region Y674-R685) is
highlighted in magenta, and the principal and cemantary subunits of the receptors are coloured in
green and cyan, respectively. These models showatfi®rmation of the S-peptide bound to the first
pocket at the beginning of the simulations. In hinenano4p2 receptor, the binding pocket is formed
by oneo4 and ong32 subunit, whereas in the humai nAChR, the pocket is formed by tved
subunits. In theByd receptor, the two binding pockets are non-equntalene is formed by aw and

a d and the second by anand ay subunits. B) Closeup view of the peptide-receptor interaction
region. Residues involved in binding of the S-padgtare shown with sticks. Note that the sidechain
of R682 in the S-peptide is located inside the atiorbox establishing cation-interactions with
some of the highly conserved aromatic residuesditihe pocket. Note also that all residue numbers
used in this work, unless stated otherwise, refehé¢ humara7 (UniProt code P36544), humad
(UniProt code P43681), humd2 (UniProt code P17787)etronarce californica a (UniProt code
P02710),Tetronarce californica & (UniProt code P02718)letronarce californica y (UniProt code
P02714) and SARS-CoV-2 spike protein (Uniprot cBOBTC2) sequences.

Figure 3. Representative conformation of the a7 complex, in which direct interaction between
TrpB and R682 is observed. (A) Overall view of the S-peptide? complex. B) Closeup view of the
R682 interaction region within the aromatic boxeTgrincipal and complementary subunits of dfie
receptor are coloured in green and cyan, respéctiidne S-peptide is highlighted in magenta.

Interactions between the guanidinium group of R@8& the aromatic rings of TrpBx{W171),
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TyrCl (@7Y210) and TyrC2(7Y217) are shown with dashed lines. See also F&g8d3-S16 for
more details about the behaviour of the S-peptidenidbound t@7 nAChR.

Figure 4. Accessible surface area (ASA) of Y674-R685 region in the context of the fully
glycosylated full-length SARS-CoV-2 spike. (A) A snapshot taken from the simulations by Casalino
et al. (55) of the glycosylated full-length SARS-CoV-2lspin the closed state showing Y674-R685
loop protruding into the solvent. The protein ipideed with a grey surface, whereas 674-685 loop is
shown as a cyan ribbon. The glycans are illustratét blue sticks. B-C) The ASA of the of
residues 674-685 (corresponding to the S-peptid) the area shielded by glycans, at multiple probe
radii from 1.4 A (water molecule) to 15 A are caitad using the available MD trajectories of the
full-length models of the glycosylated SARS-CoVilke protein in the closedB] and open states
(C) from Casalinoet al. (55). The area of 674-685 shielded by the glyadangresented in blue,
whereas the grey line represents the accessildeoa@’4-685 in the absence of glycans. Highlighted
in cyan is the area of 674-685 that remains aduessi the presence of glycans. The calculated
values have been averaged across the three cimaireenss the different replicas performed for each

system by Casalinet al. (55). Error bars correspond to +/- standard denat
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